AWEsome: An open-source test platform for airborne wind energy systems

Philip Bechtle*, Thomas Gehrmann*, Christoph Sieg[§], Udo Zillmann[†]

*Universität Bonn, §Kiteswarms ltd. & Humboldt Universität zu Berlin, †Daidalos Capital

AWEsome (AWE standardized open source model environment)

- easy access to the AWE field: cross-wind flight of tethered fixed-wing aircraft test environment for design strategies / algorithms without high financial risk
- cheap (< US\$ 1000) → disposable
- open source (OS)
- various tools for data logging and analysis
- SITL simulations based on flight-dynamics model JSBsim log files with detailed primary and processed data
- software for data analysis
- components
- modified off-the-shelf polystyrene model aircraft, reinforced with carbon fabric
- flight control hardware pixhawk and software ArduPlane of ardupilot
- ground control station (GCS) software mission planner off-shore fishing rod (ground station for tethered flight)

- ote radio control, 2 receiver to receive signals from the tr
- 3 telemetry used for communication between ground control station and drone, 4 Buzzer for audio status information, 5 safety switch to prevent from accidental arming, 6 12C splitter provides three additional ports for digital peripherals, 7 GPS/compass module provides positioning and heading data during flight, 8 pithnawk, 9 battery provides power.
- 10 propeller provides thrust, 11 connection cables to servos, 12 airspeed sensor me
- 13 servos to steer the ailerons; servos for rudder and elevator are inside the fuselage

ArduPlane main control loop

loop() calls tasks in ArduPlane.cpp:

- · ahrs_update (attitude and hight reference system)-update of the state
- · read_control_switch selects flight mode according to position of control switch at
- · navigate determines desired position and attitude and deviation
- · adjust altitude target sets desired altitude
- · update_alt determines pitch and throttle to reach desired altitude and airspeed
- update_flight_mode updates desired roll angle, pitch and throttle

Tethered flight modes

implemented flight modes at a tether of constant length \Rightarrow navigation on a hemisphere simplest periodic flight modes (piecewise constant curvature):

LOTTER 3D (inclined) circle

EIGHT_SPHERE (inclined, rotated) figure-eight pattern ⇒ limited tether torsion

Figure-eight pattern

- · consists of two great circle segments and two small (turning) circle segments

- $\stackrel{\cdot}{\mathrm{sphere}}\ \mathrm{radius}\ R$ turning circle center inclination $0 < \theta_c < \frac{\pi}{2}$
- turning circle opening angle $0 < \theta_{\rho} \le \min(\theta_{c}, \frac{\pi}{2} \theta_{c})$
- elevation angle $0 \le \gamma \le \frac{\pi}{7}$ attitude:
 - azimuth $0 \le \psi \le 2\pi$
- orientation: $\sigma = \pm 1$ gluing condition of great circle segments and small circle segments at transgression points $\vec{r}_{g,\sigma_n,\sigma_e}$:

- turning circle radius
- $R_{\cdot} = R \sin \theta$
- \Rightarrow vectors: crossing point \vec{r}_0 , turning circle centers \vec{r}_{c,σ_a} , transgression points $\vec{r}_{g,\sigma_a,\sigma_c}$ $\vec{r}_{c,\sigma_e} = R \cos \theta_{\rho} | \sigma_e \sin \theta_c$ $\vec{r}_{g,\sigma_n,\sigma_e} = R | \sigma_e \sin \theta_t \cos \frac{\hat{\chi}}{2}$
- · all vectors are rotated by multiplying with rotation matrix

$$R(\gamma,\psi) = (\vec{e}_{\gamma},\vec{e}_{\psi},\vec{e}_{r})\;, \qquad \vec{e}_{\gamma} = \partial_{\gamma}\vec{e}_{r}\;, \qquad \vec{e}_{\psi} = \frac{\partial_{\psi}\vec{e}_{r}}{\cos\gamma}\;, \qquad \vec{e}_{r}' = \begin{pmatrix} \cos\gamma\cos\psi\\\cos\gamma\sin\psi\\-\sin\gamma\end{pmatrix}$$

AWEsome: An open-source test platform for airborne wind energy systems

Philip Bechtle*, Thomas Gehrmann*, Christoph Sieg§, Udo Zillmann

*Universität Bonn, §Kiteswarms ltd. & Humboldt Universität zu Berlin, †Daidalos Capital

continued from page 1

Figure-eight pattern on S 2 of radius $R=120\mathrm{m}$ at $\gamma=45^\circ$

Attitude visualization

Temporal analysis

airspeed v_a , throttle, distance r., from center

projection $\sin \psi_*$ of lateral position onto east.

projections of attitude (forward, starboard, down unit vectors) onto direction of \vec{r}_o

- wind speed of only $v_w = 0.42 \frac{m}{s} \Rightarrow$ throttle especially in upwards turning circles
- periodic tether force variations visible ($r_a \propto \text{ tether force}$)
- correlations of tether force with r_a, v_a Jniversität Bonn

53115 Bonn, German

universitätbonn Universität B

Grey House Vention Lane Putsborough EX33 1 LD, UK email: bechtle@physik.uni-bonn.de KITESWARMS email: christoph@kiteswarms.com

Radial and tansversal deviation from desired path

· radial deviation maximally positive on geodesic segments where altitude is decreased

· radial deviation maximally negative on turning circles where altitude is increased

· transversal deviation positve/negative outwards/inwards of the desired path · transversal deviation becomes zero approximately at crossing point · transversal deviation maximally positive/negative in turning circles / on geodesics Radius

· radius is maximal where airspeed is maximal (on geodesic segments)

· radius and airspeed are maximal in the vicinity of the crossing point

· successfully set up a low-cost AWE test platform

modified / reinforced an off-the-shelf model aircraft

· implemented new flight modes in ardupilot

developing / testing AWE design strategies

· planned further modifications / improvements

· implementation of different flight patterns

measurement of the tether force

· complete logging of all sensor and (processed) flight data

implementation of a tether model in the control algorithms

implementation of the used aircraft as a SITL model

Conclusions and outlook

· demonstrated that an elementary, economic setup is sufficient for tethered flight

provided AWEsome: a suitable intuitively understandable starting point for

construction of an automatized ground station for tether reel-out and reel-in

awesome.physik.uni-bonn.de

use of tangential and normal frame of the sphere as reference frame for navigation

Contributions very welcome!

→ maximal tether tension

→ minimal tether tension

Friedrich-Ebert-Anlage 36 60325 Frankfurt am Main, Germany

