Experimental Characterization
of a Force-Controlled
Flexible Wing Traction Kite

Influence of gravity  in practice and theory

In-flight flow measurement Oscillation of the kite o Lfoma oot ke an et g

We use an airborne sensor to capture inflow angles and

apparent flow velocity v, directly at the kite: s Vo (FlOW)

F. (Ground) — Oscillate with f = 1,2 Hz
= No uncertainty from tether sag and unknown wind Uro e for some flight situations

speed as for ground based measurements [1] [2] az, a (IMU)
= No limit in wing loading or kite size - the properties of
any kite at relevant wing loading can be measured
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15 1“ _ is described by the ODE for equal to calculated Aa during traction phase. |
| = Supports the assumption of quasi steady behaviour

G = 4,2 during traction phase; G = 3 during retraction.
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Fig. 1. Sensor position and recorded
data of the air flow at the kite

Force control

When the kite operates at its predefined
force limit, reeling velocity v, Is used to keep
the tether force constant.

= ¢; and v, can not vary independently
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Fig. 6: During traction phase with constant
power ratio the kite’'s heading has a big
effect on angle of attack and thus c; .

(1) L=%y2¢S Fig. 3: Oscillation modes of the kite in traction phase
2 .
Fig. 1 shows opposing trends for v, and a,,: COnCI US|On
= High flow velocities must coincide with a low angle of « Radial oscillation mode: » Quasi-steady kite flight can be presumed for the
attack to obey (Eq. 1) S | When tether force drops below intended value (1a) time scale of kite manoeuvres.
_ Kite oscillation during traction phase v is reduced, V, . drops and Olm@ enlarges. = The entire kite can oscillate - Eigen frequencies and
% | = F, increases (1d) and overshoots intended value control laws must be chosen carefully.
o = ¢; varies with power ratio and angle of attack, a
E » Tangential oscillation mode: dependant variable in a force-controlled system.
2 By moving forward (2b) kite pitches down by 6 = -, biggest influence on c;,.
% - decreases@ and F, tilts back again .
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