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Force control 
When the kite operates at its predefined 

force limit, reeling velocity 𝑣𝑟 is used to keep 

the tether force constant. 

⇒ 𝑐𝐿 and 𝑣𝑎 can not vary independently 

(1) 𝐿 =
ρ

2
𝑣𝑎

2𝑐𝐿𝑆        

Fig. 1 shows opposing trends for 𝑣𝑎 and α𝑚:  

⇒ High flow velocities must coincide with a low angle of 

    attack to obey (Eq. 1) 

In-flight flow measurement 
We use an airborne sensor to capture inflow angles and 

apparent flow velocity 𝑣𝑎 directly at the kite: 
 

 No uncertainty from tether sag and unknown wind 

speed as for ground based measurements [1] [2] 

 No limit in wing loading or kite size - the properties of 

any kite at relevant wing loading can be measured 

Oscillation of the kite 
 

α𝑚, 𝑣𝑎  (Flow) 

𝑣𝑟, 𝐹𝑡    (Ground) 

𝑎𝑧, 𝑎𝑥   (IMU) 

 
 
 
 
 
 
 

 

 

𝑚𝑥 +  ρ𝑣𝑎𝑐𝐷𝑆𝑥 +  𝐹𝑎
𝑥

𝐵
= 𝐹(𝑡)                     (2) 

During traction phase we obtain: 

 𝑓0 = 0,81 𝐻𝑧     &     𝜁 = 0,63 
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Conclusion  
 Quasi-steady kite flight can be presumed for the 

time scale of kite manoeuvres. 

 The entire kite can oscillate - Eigen frequencies and 

control laws must be chosen carefully. 

  𝑐𝐿 varies with power ratio and angle of attack, a 

dependant variable in a force-controlled system. 

 Through weight the heading of the kite has the 

biggest influence on 𝑐𝐿. 

Quasi-steady model 
QSM [3] assumes that for kite manoeuvre timescale: 

 Forces on the kite are balanced. 

 Accelerations are negligible. 

From fig. 2a:           𝑇𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 ≪ 𝑇𝑚𝑎𝑛𝑜𝑒𝑢𝑣𝑟𝑒𝑠 

⇒ Shows the kite’s quick reaction, backing QSM 

⇒ QSM is used to calculate G and 𝑐𝐿 from measured data 

Influence of gravity       in practice              and theory 

Fig. 1: Sensor position and recorded 

data of the air flow at the kite 

Fig. 3: Oscillation modes of the kite in traction phase 

Fig. 2a: All variables show a peak at 1,2 𝐻𝑧. 

 𝛼𝑚 shows a second maximum at the pumping cycle 

timescale of  𝑇 = 100 𝑠. 
 Accelerations peak at 𝑇 = 25 𝑠 which is the timescale 

of one flight pattern (oval or eight). 
 

Fig. 2b: Maximum force occurs simultaneously with 

maxima in 𝛼𝑚. Both follow the maximum forward 𝑎𝑥 and 

downward acceleration 𝑎𝑧 with a delay of  about  
π

2
. 

Fig. 4: When time averaged over 2,5 𝑠 measured α𝑡 is 

equal to calculated Δα during traction phase.  

⇒ Supports the assumption of quasi steady behaviour 

G = 4,2 during traction phase; G = 3 during retraction. 

Fig. 6: During traction phase with constant 

power ratio the kite’s heading has a big 

effect on angle of attack and thus 𝑐𝐿. 
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Fig. 5: 𝑐𝐿 − α curve 
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 Radial oscillation mode: 

When tether force drops below intended value       : 

𝑣𝑟 is reduced, 𝑉𝑘,𝑟       drops and α𝑚       enlarges. 

⇒ 𝐹𝑎 increases        and overshoots intended value  

 

 Tangential oscillation mode: 

With α𝑚 ↑: 𝐹𝑎 tilts forward, kite accelerates 

By moving forward       kite pitches down by θ =
𝑥

𝐵
, 

α𝑚 decreases       and 𝐹𝑎 tilts back again      . 
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