A Wake Model for Crosswind Kite Systems

Mojtaba Kheiri^{1,2}, Vahid Saberi Nasrabad¹, Samson Victor², and Frédéric Bourgault¹ ¹500-1177 West Hastings, Vancouver, B.C., Canada ²1455 de Maisonneuve Blvd., Montréal, QC, Canada {mojtaba, vahid, victor, frederic}@newleaf.co

1.HIGHLIGHTS

- The induction factor a and wake profile for two different kite systems were calculated computationally.
- The kite has a simplified straight downwind configuration.
- For a large-scale (~ 2 MW) kite system: a=0.126 (computationally), and a=0.14 (analytically).
- For a small-scale ($\sim 100 \text{kW}$) kite system: a = 0.046 (computationally), and a = 0.045 (analytically).

3.Objectives

- The short-term objective is to study the wake characteristics of crosswind kite systems using CFD
- The long-term vision is to develop a semiempirical wake model

4.Background & Theory

- General perception: the induction factor of a crosswind kite system is always negligible; e.g. Loyd [1] neglected "the induced effects of the kite slowing the wind."
- Following equations were proposed for kites in the straight downwind configuration [2]:

$$\frac{a}{1-a} \simeq \frac{1}{4} \left(\frac{A_k}{A_s}\right) C_L \left(\frac{C_L}{C_D}\right)^2$$

Figure 1: 'Lift' or ground-based generation mode

$$P_L = \left(\frac{1}{2}\rho A_k v_{\infty}^3\right) c_L \left(\frac{c_L}{c_D}\right)^2 (1-a)^2 (1-e)^2 e$$

Figure 2: 'Drag' or on-board generation mode

$$P_D = \left(\frac{1}{2}\rho A_k v_{\infty}^3\right) c_L (\frac{c_L}{c_D})^2 (1-a)^3 \frac{\kappa}{(1+\kappa)^3}$$

2. MOTIVATIONS

- To obtain the total harvested power for a given kite farm lay-out
- To find the optimal kite farm lay-out

5.Methodology: CFD simulations

Table 1: CFD simulations setting

Platform	ANSYS R16.2			
No. of processors	12			
RAM	96 GB			
Turbulence model	$k-\varepsilon$			
PresVel. coupling	SIMPLE			
Mesh motion	sliding mesh			
Time step size	1 deg			
For the Large-Scale Kite				
Mesh count	$5.8~\mathrm{M}$			
Total CPU time	25 days			

Figure 4: Close-up of the kite

Figure 6: Solution domain mesh

Figure 5: Mesh around the wing section

6.Test Cases

Table 2: Small-scale kite system configuration

Power	$\sim 100 \text{ kW}$	R	79.9 m
Airfoil type	Clark-Y	A_s	8788 m^2
A_k (wing area)	23.5 m^2	v_{∞}	$10.54 \mathrm{m/s}$
b (wing span)	17.5 m	v_c	80.31 m/s
AR	13	e	0

Table 3: Large-scale kite system configuration

Power	$\sim 2~\mathrm{MW}$	R	123.3 m
Airfoil type	Clark-Y	A_s	41785 m^2
A_k (wing area)	200.7 m^2	v_{∞}	11.66 m/s
b (wing span)	53.94 m	v_c	91.03 m/s
AR	14.5	e	1/3

7. Results: Induction factor & Wake of a small-scale kite

Figure 7: Flow-field after 20 cycles

Figure 8: Flow deficit in the kite's vicinity. The average value at x = 0 is a = 0.046

Figure 9: Wake profile at different x/R

9. Conclusions & Future work

- The induction factor, a, for a crosswind kite system may be significant; power may considerably be overestimated if a is neglected, e.g. 9% for the 100kW system and 24% for the 2MW system
- A noticeable low-speed wake flow is generated, which extends beyond the near-field region
- The actual inclined configuration, including the tether and wind gradient, will be modelled and solved computationally
- Attempt will be made to develop semiempirical wake models
- Interactions between multiple kite systems will be studied computationally

ACKNOWLEDGEMENT

We are grateful to Prof. M. Paraschivoiu of Concordia University for the use of CFD computational facilities.

REFERENCES

- [1] Loyd, M.L., 1980. Crosswind kite power. Journal of Energy (AIAA), 4(3), 106-111.
- [2] Kheiri, M., Bourgault, F., and Saberi Nasrabad, V., 2017. Power limit for crosswind kite systems. In Proc. of ISWTP 2017, Montréal, Canada, 43-

8.Results: Induction factor & Wake of a large-scale kite

Figure 10: Flow-field after 27 cycles

Figure 11: Flow deficit in the kite's vicinity. The average value at x = 0 is a = 0.126

Figure 12: Wake profile at different x/R