

Introduction

Among the Airborne Wind Energy concepts Magnus based airborne wind energy systems uses rotating cylinders as aerostat. The rotating cylinder when exposed to wind flow produces a lift force, described as Magnus effect. The Magnus based aerostat have a high lift coefficient which is supplemented by lighter than air capabilities, and have a naturally robust design. The aerostat following a predefined trajectory leads to the development of high traction force in the tether which in turn is used to drive the generator and produce electricity.

Magnus Effect

Control Strategy

Guidance strategy

Control of tether length

 C_L : Coeff. of Lift, C_D : Coeff. of Drag, X: Spin ratio = $\frac{\omega_{cyl}r_{cyl}}{v_{axz}}$, C_{Dy} : Coeff. of Drag- y_b – direction $\boldsymbol{F}_{\boldsymbol{L}}: Lift Force = \frac{1}{2}\rho S_{cyl} v_{axz}^2 C_L, \qquad \boldsymbol{F}_{\boldsymbol{D}}: Drag Force = \frac{1}{2}\rho S_{cyl} v_{axz}^2 C_D,$ F_{D_v} : Drag Force, y_b – direction = $\frac{1}{2}\rho S_{cyl}v_{ay}^2 C_{Dy}$

The above analysis shows that the assumed polynomial expressions for the Coeff. of Lift (C_L)

• We apply the guidance strategy given in [5], and another gain k_n to obtain a constant

width trajectory $\eta_{ref} = 2$

Simulation Results

- A PID controller K_1 is used in order to follow the radial position $r_{t_{ref}}$ through U_T acting on the winch actuator.
- The response time for this control loop is set to be faster than the variations of other forces in order to get an efficient production cycle.
- **Θ**: Attitude of Magnus cylinder by ZYZ { α , δ , γ } **T**_C : Winch Tension r_t : Tether length γ_{ref} : Yaw angle in ZYZ transformation $\mathbf{r}_{\mathbf{t}_{ref}}$:Reference radial postion

and the Coeff. of Drag (C_D) .i.e. the aerodynamic model for Magnus cylinder as proposed by Miltuiovnic [1] agrees with the historical experimental data available on Magnus cylinder.

 $C_D = -0.0211X^3 + 0.1873X^2 + 0.1183X + 0.5,$ $C_L = 0.0126X^4 - 0.2004X^3 + 0.7482X^2 + 1.3447X$

Mathematical Model

Equation of rate of change of translational velocity [2]

$$\dot{\mathbf{v}_{b}} = \frac{\mathbf{I}}{\mathbf{m}}(\mathbf{F}_{b} - \widetilde{\boldsymbol{\omega}_{b}} \mathbf{v}_{b})$$

where,

$$\widetilde{\omega}_{b} = \begin{bmatrix} 1 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{bmatrix}, \text{ and}$$

F_b represents Body forces acting on the ABM and is given by

$$F_b = F_L + F_D + F_{dy} + W_b + F_{bu} + F_r$$

 W_b : Weight in Body Frame, **p:** Roll rate, **F**_{bu}: Bouyant Force, q: Pitch Rate, **F**_r : Rope Force, r: Yaw Rate, $\{x_b - y_b - z_b\}$: Body frame of ref., β : Elevation angle, $\{x_i - y_i - z_i\}$: Inertial frame of ref. η : Azimuthal angle

Reference and state variable for tether length ($r_{t\nu}$ r_{tref}), tether tension T_c , angular speed of the Magnus rotor $(\omega_{cyl}, \omega_{cyl_{ref}})$, and yaw angle (γ, γ_{ref}) .

Simulated output power during production and recovery phases with a comparison with a simplified static model **P**_{static}.

Power Curves

Comparision of Power Curve based on static model of a Magnus-based AWE system with that of a conventional Wind turbine (1.5MW).

Phase I: Power extraction is maximized following Loyd cond.

Phase II: Maximum traction force is reached, \dot{r}_{prod} continues to increase.

Phase III: Maximum speed of the generator is reached.

By modifying Surface (S_{cyl}) , Maximum Tension (T_{max}) , and Maximum Power (P_{max}) , the shape of the power curve can be adapted according to the

Static Model

Theoretical Power produced during production phase (P_{prod}) as proposed by [3] Loyd

(1980) and refined in [4] Argatov et al. (2009)

$$P_{prod} = \frac{1}{2}\rho 4S_{cyl} \left(\frac{v_{\omega}\cos(\beta)}{3}\right)^3 C_L \left(\frac{C_L}{C_D}\right)^2, \quad \dot{\boldsymbol{r}}_{prod} = \frac{v_{\omega}\cos(\beta)}{3}: \text{Reel-out speed}$$

- Theoretical Power consumed during recovery phase (P_{rec}) $P_{rec} = \frac{1}{2} \rho S_{cyl} (v_{\omega} \cos(\beta) + \dot{r}_{rec})^2 C_{Drec} \dot{r}_{rec}, \quad \dot{r}_{rec}: \text{ Reel-in speed}$
- Estimated Power produced in one complete cycle (P_{cycle})

$$P_{cycle} = \frac{P_{prod} \dot{r}_{rec} - P_{rec} \dot{r}_{prod}}{\dot{r}_{rec} + \dot{r}_{prod}}$$

> Hence, to maximize the power is to maximize the ratio $C_L \left(\frac{C_L}{C_D}\right)^2$, the maximum $C_L \left(\frac{C_L}{C_D}\right)^2$ for the magnus cylinder is found to be at spin ratio, X = 3.6.

distribution of the wind speed at the site.

Conventional Wind turbine : 1.5MW **AWES**₁: $S_{cyl} = 500 \ m^2$, $T_{max} = 8e5 \ N$, $P_{max} = 4 \ MW$ **AWES₂:** $S_{cvl} = 1000 \ m^2$, $T_{max} = 8e5 \ N$, $P_{max} = 4 \ MW$

References

[1] Milutinovic', M., Coric', M., and Deur, J. (2015). Operating cycle optimization for a Magnus effect based airborne wind energy system. Energy Conversion and Management, 90, 154–165. doi: 10.1016/j.enconman.2014.10.066.

[2] Y. Gupta, J. Dumon, and A. Hably, "Modeling and control of a Magnus effect-based airborne wind energy system in crosswind maneuvers," pp. 1–8.

[3] M. L. Loyd, "Crosswind kite power," Journal of Energy, vol. 4, no. 3, pp. 106–111, 1980.

[4] I. Argatov, P. Rautakorpi, and R. Silvennoinen, "Estimation of the mechanical energy output of the kite wind generator," Renewable Energy, vol. 34, pp. 1525–1532, 2009.

[5] Fagiano, L., Zgraggen, A.U., Morari, M., and Khammash, M. (2014). Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design and experimental results. IEEE Transactions on Control System Technology, 22(4), 1433–1447. doi: 10.1109/TCST.2013.2279592.

